

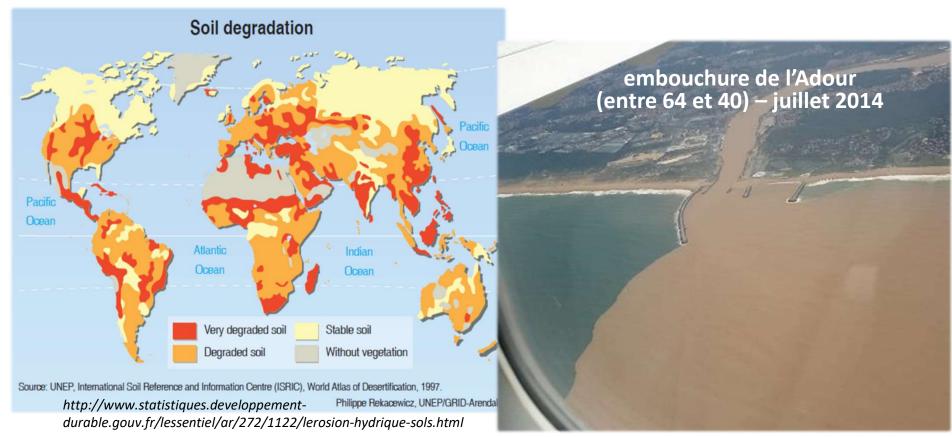
Jean-Pierre SARTHOU

Pr. Agronomie-Agroécologie

Performances agro-écologiques de l'Agriculture de Conservation des Sols

travail du sol intensif

Noter que le labour ne règle pas tout à fait le problème des adventices...

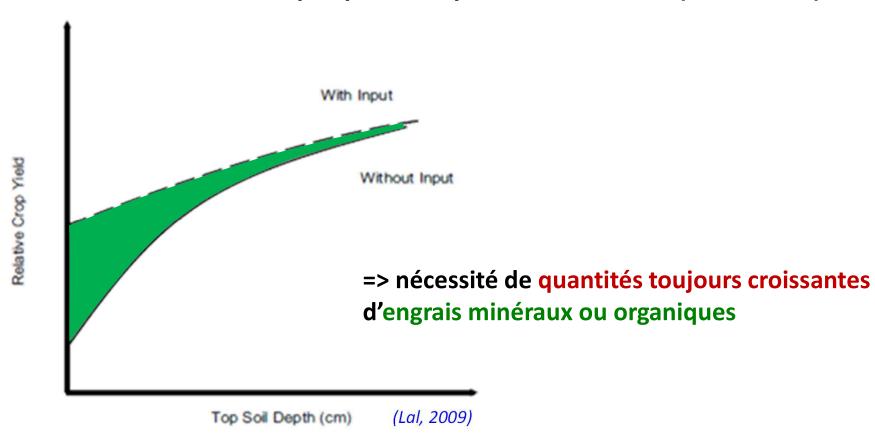


érosion des sols

> 50% sols agricoles dégradés à très dégradés

+ ~13 Mha chaque année (Wood et al. 2000)

26 Mds t sol arable emportées dans océans chaque année = de quoi 'créer' 7 Mha terres arables (Kaiser 2004)

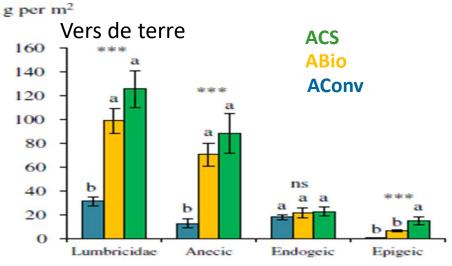


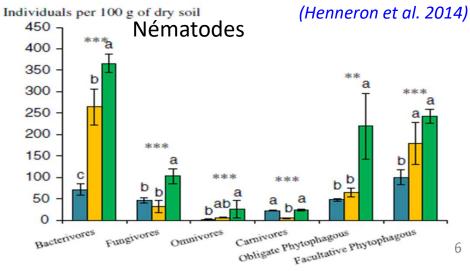
Perte de fertilité des sols par perte de profondeur de sol (<= érosion)

aucun travail du sol pour passer d'une culture à l'autre

→ érosion ≈ 0, = vitesse formation des sols

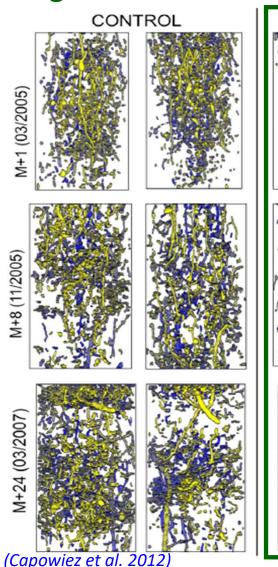
(Montgomery 2007)

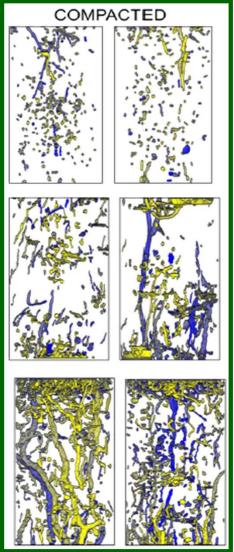




Wsol + engrais & pestcides + sols nus → perte 'macro- & mésobiodiversité' sols

→ Bioporosité (à forte continuité porale) disparaît presque des sols labourés





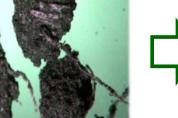
Les vers de terre peu à peu, recréent de la macroporosité, à très forte continuité porale

travail du sol intensif + sols nus > perte de 'microbiodiversité' des sols

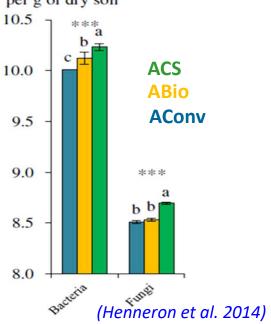
qui participait à forte cohésion entre agrégats

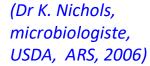
Sous le paillis...

...la belle vie!


+ de C en retour & non travail sol → microbiodiversité ++

forte biomasse fongique (dt hyphes mycorhiziens => glomalines) & bactérienne (=> colles biologiques)


micro- et macroagrégats plus gros


Log₁₀ copy number per g of dry soil

très forte stabilité structurale des agrégats

mulch (protection 'anti-splash')

forte biomasse microbienne

nombre biopores + important (à forte continuité porale)

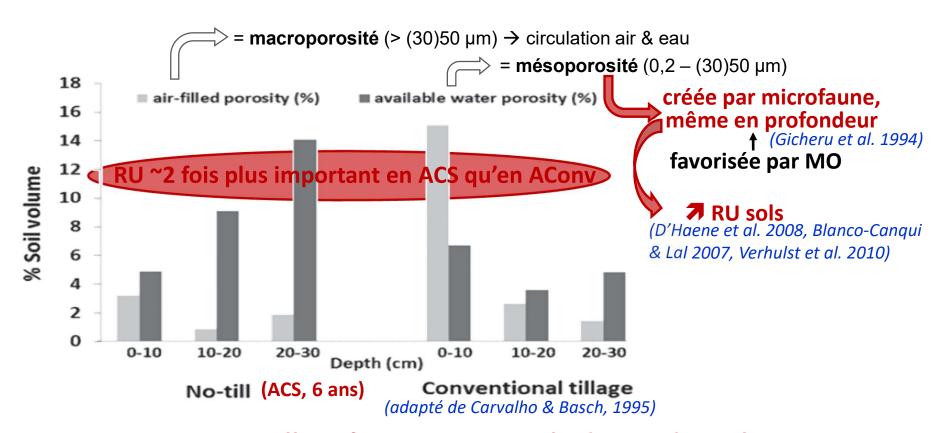
Ksat jq 123 fois > AConv
(Blanco-Canqui and Lal 2007)
mais parfois = ou < celle AConv quand Ø
résidu laissé à surface sol!
(Horne et al. 1992; Chang and Lindwall 1992)

vitesse infiltration pluies
(Pheap et al. 2019)

(Rhoton et al. 2002, Silburn and Glanville 2002, Tebrügge & Düring 1999)

Effets très visibles sur comportement eau dans sols selon qu'ils sont :

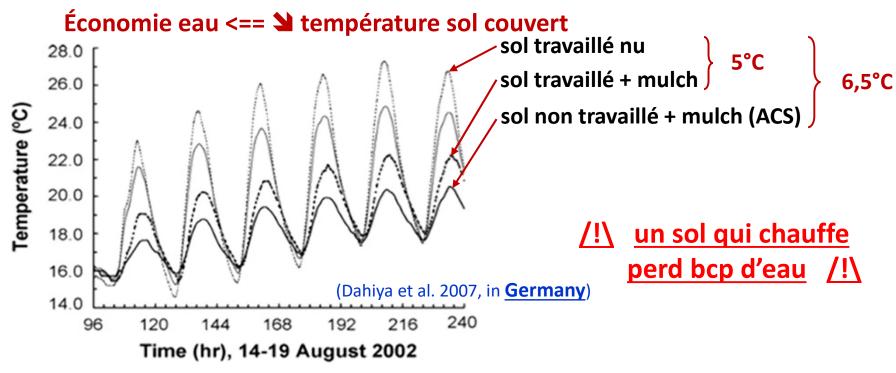
travaillés 'depuis toujours' : AConv en ACS depuis 15 ans



Adaptation au CC ==> sécheresses et canicules plus fréquentes (IPCC, 2007)

En ACS: meilleur fonctionnement hydrique des sols (Carvalho & Basch, 1995)

→ meilleure efficience hydrique des pluies



Adaptation au CC ==> sécheresses et canicules plus fréquentes (IPCC, 2007)

Evaporation d'eau en été, sur chaumes blé :

- ACS, sol avec résidus : 0,6 mm/j = 4,2 mm en 1 semaine
- AConv après chaque déchaumage : 4 mm/j

(Hatfield et al. 2001)

= 28 mm en 1 semaine

Nécessité en moy. de 25 mm/t MS

Atténuation du CC en diminuant [GES]

Via stockage C

Capacités très variables :

- 200-500 kg C/ha/an (Dimassi et al., 2014, Powlson et al. 2016)
- 1300 kg C/ha/an (de Moraes Sà et al. 2015)

0-30 cm

- "très limitées voire nulles" (Angers & Eriksen-Hamel 2008; Luo et al. 2010; Haddaway et al. 2017)
- "importantes" (1150 kg C/ha/an) (Veloso et al. 2018)

30-100 cm

→ clé voûte stockage C : <u>0 W sol</u> + gros apports biomasse C/N élevé

(*Virto et al. 2012*; Li & Evanylo 2013; de Moraes Sà et al. 2015; Abdalla et al. 2013, 2016)

Atténuation du CC en diminuant [GES]

Via moindres émissions CO₂, N₂O, CH₄

- ♦ ¥ 60% CO₂ 'fossile' <= ¥ 60% consommation carburant (SoCo 2009)
- * \(\sum_{CO_2}'\) 'contemporain' <= \(\sum_{\text{minéralisation MOS}}\) = \(\sum_{\text{Reicosky 1997; Abdalla et al. 2016}}\)
- \Leftrightarrow $\stackrel{\checkmark}{\text{CH}_a}$ & $\stackrel{\checkmark}{\text{N}_2}$ O <= $\stackrel{\checkmark}{\text{M}}$ minéralisation MO (K2) (Mangalassery et al. 2015)
 - <= 7 activité & biomasse microbiennes (Dendooven et al. 2012; Palm et al. 2014; Mangalassery et al. 2015)
- ✓ Plupart publications =>

 N₂O (dont Oorts et al. 2007) <= syst. ACS étudiés : non aboutis essai longue durée Boigneville (Arvalis Institut Végétal)
- \checkmark Après 30 ans d'ACS (USA) : $\stackrel{\searrow}{\mathbf{N_2O}}$ de 40% /labour et 57% /chisel (Omonode et al. 2011)
- ✓ Après 5-10 ans d'ACS : $\sqrt[n]{N_2}O$ /ACony (jq +54%), mais potentiel réchauffement global net $[CO_2(3)] + CH_4(3) + N_2O(7)] : 3 26-31\%$ en ACS / ACony (Mangalassery et al. 2015; Dendooven et al. 2012; Ahmad et al. 2009)

Meilleure préservation de l'environnement

Via moindre utilisation des pesticides en ACS

- ❖ **≥ voire** arrêt des fongicides <= nette **≥** maladies (Kutcher et al. 2011; <u>Basch et al. 2015</u>)
 - ✓ pH-Eh sol & plantes moins favorable aux agents phytopathogènes (<u>Husson 2013</u>)
 - ✓ émission par mulch en cours décomposition de composés organiques volatiles (VOC) inhibiteurs des hyphes & inocula de maladies fongiques (Rhizoctonia solani, Fusarium oxysporum, Pythium intermedium) sur résidus culture (van Agtmaal et al. 2018)
- ❖ ➤ voire arrêt des insecticides <= nette ➤ ravageurs (Kesavan & Malarvannan 2010;
 Basch et al. 2015)</p>
 - ✓ ACS compense effets négatifs paysage simplifié <= ACS favorise auxiliaires (Tamburini et al. 2016)
 - ✓ ACS favorise<u>rait</u> HIPV par plantes (moins oxydées que sur sols travaillés)

Sphaerophoria scripta

Meilleure préservation de l'environnement

Via moindre utilisation des pesticides en ACS

- ❖ 当 des herbicides!
 - ✓ **a** émergence m.h. après semis (Gupta & Seth, 2007; Nichols et al. 2015; Singh et al., 2015)
 - ✓ **7** prédation graines m.h. par insectes granivores et VdT anéciques & endogés (Petit et al. 2018; Eisenhauer et al. 2010)
 - ==> après 3 ans, sans apport nouv^{lles} graines m.h. (et toutes choses = par ailleurs) : densité adventices parcelle ACS <u>>> 80%</u> / parcelle en système labour (Nichols et al. 2015)
 - ==> > utilisation herbicides en ACS aboutie :
 - devient rapidement ≈ celle en AConv (Sturny & Chervet, 2015)
 - voire < celle en AConv (Nichols et al. 2015; Anderson 2016; Virginia et al. 2018)

« Diminution utilisation herbicides pas immédiate mais possible à partir 2^{ème} rotation » - agriculteur enquêté, projet Bag'Ages, master de S. Thoraval, septembre 2018.

Si SD seul => 7 m.h. => 7 utilisation herbicides (Nichols et al. 2015, Virginia et al. 2018)

Meilleure préservation de l'environnement

Via réduction des pertes herbicides car érosion sol moindre

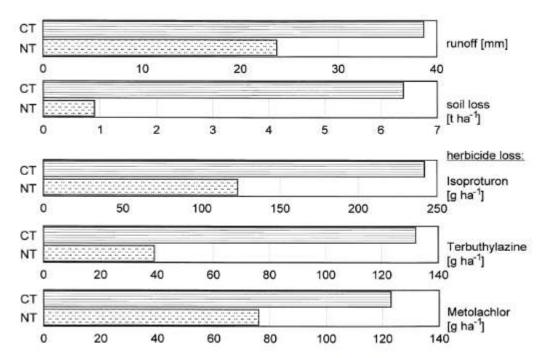


Fig. 11. Runoff, soil loss, and herbicide losses via lateral translocation in a rainfall simulation experiment (63 mm h⁻¹ for 1 h); comparison of two different tillage treatments on the Luvisol (according to Fischer et al., 1995).

(Tebrügge & Düring, 1999)

Meilleure préservation de l'environnement

Via meilleure dégradation résidus pesticides

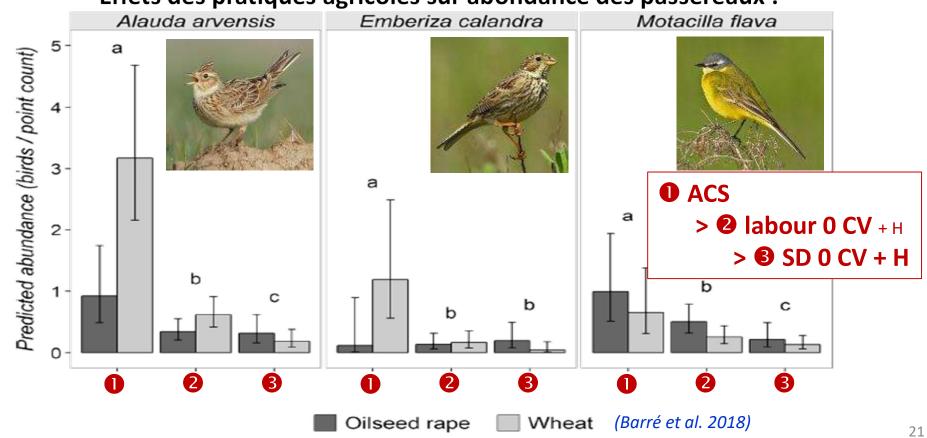
- * 7 hétérogénéité (drillosphère, turricules VdT) => 7 diversité bactérienne catabolisant molécules xénobiotiques à travers activation gènes (Monard et al. 2008)
 - * 7 réseau micro-, méso- et macroporal (Carvalho & Basch, 1995)
 - ==> 7 infiltrat° mais 2 percolat° (sauf si capacité champ atteinte, car forte continuité macroporale Petersen & Krogh, 2016)
 - ==> **7** contacts eau/solutés (xénobiotiques) / bactéries (Monard et al. 2008)
 - ==> **7** dégradation molécules herbicides pendant percolation
 - ==> eau potentiellement moins polluée qd atteint nappe phréatique (Petersen & Krogh, 2016)

SD (~)seul: **₹** flux directs vers nappe (via galeries verticales de VdT anéciques)

==> **7** risques de pollution des eaux souterraines (Edwards et al. 1992, Sigua et al. 1993, Alletto et al., 2012)

Via meilleure rétention résidus pesticides

❖ adsorption résidus sur MO ==> **ఎ** [herbicides] dans eaux drainage (Borin et al. 1997)



Meilleure préservation de l'environnement

Car ACS favorable à biodiversité ordinaire

Effets des pratiques agricoles sur abondance des passereaux :

Mais qu'en est-il de la productivité ?...

Plus importante méta-analyse au niveau mondial :

- rdts ACS < rdts AConv : -2.5%

Protestation fermiers US:http://www.no-tillfarmer.com/articles/4038

- rdts ACS **7** avec âge systèmes
- rdts ACS > rdts AConv en contexte stress hydrique : + 7.3% ⇒ confirmé par nbx travaux en Europe et monde ig + 120% en climats très secs (Kassam et al. 2012)

Meilleure stabilité des rdts en ACS

- hors accidents climatiques: . même stabilité qu'en AConv (Knapp & van der Heijden 2018)
 - . + 15% /ABio (Knapp & van der Heijden 2018)
- ❖ face épisodes stress hydrique : meilleure résilience que AConv

(Fernandez-Ugalde et al. 2009; Ogle et al. 2012)

...et de la rentabilité économique ?

~partout en Europe : meilleure rentabilité économique des systèmes ACS

- **3** 50 à 75% coûts main d'œuvre (projet européen SoCo, 2009)
- **3** 60% frais carburants (projet européen SoCo, 2009)
- **3** 80% frais entretien machines et matériel (Freixial & Carvalho, 2010)

L'ACS, n'aurait-elle que des avantages ?? <= 2 études multicritères

● Système ACS et 4 autres dits agroécologiques):

① pâturage tournant dynamique

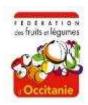
② agriculture biologique

3 agriculture de précision

4 riziculture écologiquement intensive

comparés à AConv ①: 2 SE /8

pour 8 services ②:5 SE /8


écosystémiques ③:4 SE /8

4 : 4 SE /8

==> ACS > AConv pour 7 SE : biocontrôle ravageurs, préservation biodiversité, séquestration C, fertilité sol, contrôle érosion, purification eau, régulation crues (Garbach et al. 2016)

- 2 Systèmes ACS s.s. et l.s. comparés aux systèmes ABio et AConv, pour 17 SE :
 - 7 intrants (support et régulation)
 - 10 produits (agricoles et environnementaux)
- ==> . rendement blé : ACS s.s. = AConv voire > AConv, > ACS l.s. et >> ABio
 - . qualité sol : ACS s.s. (s.l.) > AConv & ABio pour stab. struct., mais inverse pour infiltrat°
 - . régulation ravageurs : ACS, > ou < AConv & ABio selon espèces ravageurs
 - . atténuation CC par 🔰 GES : ACS > ABio > AConv
 - . amélioration de tous SE par présence élevage et sols argileux, qq soient systèmes.

==> ACS = meilleur potentiel pour lutter contre antagonisme entre productivité et performances environnementales (Chabert et Sarthou 2020)

